
Celera Assembler
Theory and Practice

Michael Schatz

August 13, 2006
University of Hawaii

Celera Assembler Overview

• Primarily developed in 25 man years by 13 computer
scientists at Celera for the private human genome
effort.

• Attacks repeats by screening high copy repeats, finding
repeat boundaries, and utilizing mate-pair information.

• Currently available as an open source project:
http://wgs-assembler.sourceforge.net

Celera Sequencing Factory

• 300 ABI 3700 DNA Sequencers

• 50 Production Staff

• 20,000 sq. ft. of wet lab

• 20,000 sq. ft. of sequencing space

• 800 tons of A/C (160,000 cfm)

• $1 million / year for electrical service

• $10 million / month for reagents

Celera Sequencing Factory

•• Collected 27.27 Million reads = 5.11X coverageCollected 27.27 Million reads = 5.11X coverage

•• 21.04 Million are paired (77%) = 10.52 Million pairs21.04 Million are paired (77%) = 10.52 Million pairs

•• 2Kbp2Kbp 5.045M5.045M 98.6% true *98.6% true * <6% <6% std.devstd.dev..

•• 10Kbp10Kbp 4.401M4.401M 98.6% true *98.6% true * <8% <8% std.devstd.dev..

•• 50Kbp50Kbp 1.071M1.071M 90.0% true *90.0% true * <15% <15% std.devstd.dev..

* validated against finished * validated against finished ChromChrom. 21 sequence. 21 sequence

•• The clones cover the genome 38.7X timesThe clones cover the genome 38.7X times

•• Data is from 5 individuals (roughly 3X, 4 x .5X)Data is from 5 individuals (roughly 3X, 4 x .5X)

Human Data (April 2000)

Chromatogram Base Calling

A sequence of basecalls is generated by mapping the recorded peaks to
an idealized trace by omitting some peaks, and splitting others.

Trimming

CLR

CLV

CLB

Trimming identifies the regions of good quality for the
assembler to use (CLR), as the intersection of the region free of
vector (CLV) and the region free of bad quality (CLB).

5’ 3’

runCA Pipeline

1. Create Stores
– gatekeeper
– PopulateFrgStore

2. Find Repeats
– meryl

3. Overlap
– overlap
– grow-overlap-store

4. Error Correction
– correct-frags
– correct-olaps
– update-erates

5. Unitigging
– unitigger
– consensus -U

6. Scaffolding
– cgw
– consensus

7. Finalize Data
– Terminator
– qc file

runCA Pipeline

1. Create Stores
– gatekeeper
– PopulateFrgStore

2. Find Repeats
– meryl

3. Overlap
– overlap
– grow-overlap-store

4. Error Correction
– correct-frags
– correct-olaps
– update-erates

5. Unitigging
– unitigger
– consensus -U

6. Scaffolding
– cgw
– consensus

7. Finalize Data
– Terminator
– qc file

Assembly Stores

• asm.gkpStore - name-id mapping, mate pairs
– populated by gatekeeper
– dump with dumpGatekeeper (output in STDERR)

• asm.frgStore - bases, qualities, clear range
– populated by PopulateFragStore
– dump with dumpFragStore

• asm.ovlStore - overlaps between reads
– populated by grow-olap-store
– dump with dump-olap-store

runCA Pipeline

1. Create Stores
– gatekeeper
– PopulateFrgStore

2. Find Repeats
– meryl

3. Overlap
– overlap
– grow-overlap-store

4. Error Correction
– correct-frags
– correct-olaps
– update-erates

5. Unitigging
– unitigger
– consensus -U

6. Scaffolding
– cgw
– consensus

7. Finalize Data
– Terminator
– qc file

Meryl: k-mer statistics

Frequent k-mer statistics: asm.mers

>325
AAAGCCCAAAGCCCAAAGCCCA
>228
AACAGCTCGATCACGTCGCTGT

count
22-mer sequence

% grep ’>’ asmbl.mers | sed ’s/>//’ | awk ’{if ($1>300) sum+= $1} END {print sum;}’

How much of the DNA is in 300 copies or more?

Not every repeat is mis-assembled,
but repeats cause (almost) every mis-assembly.

runCA Pipeline

1. Create Stores
– gatekeeper
– PopulateFrgStore

2. Find Repeats
– meryl

3. Overlap
– overlap
– grow-overlap-store

4. Error Correction
– correct-frags
– correct-olaps
– update-erates

5. Unitigging
– unitigger
– consensus -U

6. Scaffolding
– cgw
– consensus

7. Finalize Data
– Terminator
– qc file

Overlap between two sequences

…AGCCTAGACCTACAGGATGCGCGGACACGTAGCCAGGAC

CAGTACTTGGATGCGCTGACACGTAGCTTATCCGGT…

overlap (19 bases) overhang (6 bases)

overhang
overlap - region of similarity between regions
overhang - un-aligned ends of the sequences

The assembler screens merges based on:
• length of overlap
• % identity in overlap region
• maximum overhang size.

% identity = 18/19 % = 94.7%

Defines dove-tail overlap

All pairs alignment

• Needed by the assembler
• Try all pairs – must consider ~ n2 pairs
• Smarter solution: only n x coverage (e.g. 8)

pairs are possible
– Build a table of k-mers contained in sequences

(single pass through the genome)
– Generate the pairs from k-mer table (single pass

through k-mer table)

k-mer

Overlapper

• Find all overlaps ≥ 40bp allowing 6% mismatch.

• Use k-mer (k=22) seed matches with O(nd) extension
where extension quits when probability of seeing given #
of errors for amount of sequence aligned is less than 1 in
a million.

• Avoid seeding overlaps with k-mers whose occurrence >=
100 in the trimmed read set.

• Multiple threads & multiple instances allowed depending
on the input size.

AA

BB

Overlapper & Screening

• High copy repeats are filtered by excluding high
copy (>= 100) 22-mers as seeds.

• Warning:
Sequencing error can accidentally cause low copy
number seeds in high copy repeat regions creating low
coverage unitigs of collapsed repeats.

runCA Pipeline

1. Create Stores
– gatekeeper
– PopulateFrgStore

2. Find Repeats
– meryl

3. Overlap
– overlap
– grow-overlap-store

4. Error Correction
– correct-frags
– correct-olaps
– update-erates

5. Unitigging
– unitigger
– consensus -U

6. Scaffolding
– cgw
– consensus

7. Finalize Data
– Terminator
– qc file

Error Correction

If a If a kk--mermer (k=10) matches a (k=10) matches a kk--mermer
from an overlapping read then the from an overlapping read then the
bases in the bases in the kk--mermer of the read are of the read are
confirmed.

If a If a base is not confirmed and the is not confirmed and the
1-neighborhood of an overlapping of an overlapping
kk--mermer matches it then there is a matches it then there is a
vote for correction. The majority vote for correction. The majority
correction vote is applied to the correction vote is applied to the
sequence.sequence.

Note: Sequences are not actually Note: Sequences are not actually
changed, only overlaps are rechanged, only overlaps are re--
evaluated as single base pair evaluated as single base pair
errors are errors are ““correctedcorrected””..

ACGTACCGATATGACAC

ACGTACCGTTATGACAC

ACGTACCGATATGACAC

ACGTACCGATATGACAC

dump-olap-store

1
2

1
3

ahang
bhang

1 2 I ahang bhang 1.3 0.1
1 3 N -ahang -bhang 2.3 0.4

Innie

Normal

Original Error Rate

After Error Correction

Overlap degrees

8x coverage: each read overlaps approx. 8 reads off of each end

ahang < 0 - overlap off of 5’ end
bhang > 0 - overlap off of 3’ end

% awk ’{if ($4 < 0) end5++; if ($5 > 0) end3++;} END {print end5, end3}}’ asm.overlaps

end5 overlaps > end3 overlaps - normal (3’ end is “dirtier”)
end5 overlaps < end3 overlaps - possible vector trimming problem

% awk ’{print $1}’ asm.overlaps | sort -u | wc -l- # reads with overlaps

many reads w/o overlaps - trimming problem or ubiquitous repeat

runCA Pipeline

1. Create Stores
– gatekeeper
– PopulateFrgStore

2. Find Repeats
– meryl

3. Overlap
– overlap
– grow-overlap-store

4. Error Correction
– correct-frags
– correct-olaps
– update-erates

5. Unitigging
– unitigger
– consensus -U

6. Scaffolding
– cgw
– consensus

7. Finalize Data
– Terminator
– qc file

Unitigging

A

B

C

D
A B

C D

Original Overlap GraphTrue Layout

A

B

D

Contained
Read

Removal

A

B

D

Transitive
Edge

Removal

A,B,D

Unique
Join

Collapsing

E
F

E

F

E

F

E

F

E

F

Theorem: SCS of unitigs = SCS of reads

Revised Unitigging

• Exact Unitigging is computationally expensive

• Instead CA unitigger finds the “best” overlap on each end
of each read—its “best buddy”.

• Unitigs are chains of mutually unique best buddies—
adjacent reads are best buddies of each other and of no
other read.

• This takes time and space linear in the number of reads.

• In rare cases results are different from graph reduction.
– Low coverage regions
– High fidelity repeat copies

Best Buddy Unitigging

Original Overlap Graph

Unitig Graph

A,B,D

E,G

F,H

% difference
exceeds
threshold

A

B

C

D

E

F

G

H
True Layout

A B
C D

E
F

G

H

Best Buddy Graph

A B D

E

F

G

H

Threshold set with unitigger –e (ERATE, utgErrorRate)

False Negatives:
Sequencing Error, Trimming

• Overlaps are “missed” if the overlapping basecalls have
sequencing error beyond the threshold.

• Assembly is fragmented into smaller chunks, or reads
left as singletons.

Contig 1

Contig 2

Sequencing Error Effect

In general, contigs get larger and more reads are
placed as the error rate threshold is increased.

Contig N50 vs. Error Rate

0

10000

20000

30000

40000

50000

60000

70000

80000

0 5 10 15 20

Singleton Reads vs. Error Rate

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20

False Positives: Repeats

• Reads originating in different copies will “falsely” overlap if
% difference between repeats is less than threshold.

• Genome is mis-assembled as reads from different repeat
copies are collapsed together as the unitigger becomes
less sensitive to slight differences between repeats.

Collapsed

Truth

Repeat Effect

In general, more repeats are mis-assembled as the
error rate threshold is increased.

Alignment Breaks vs. Error Rate

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20

Unitig Error Rate Impact

Unitig Scoring

A B CR1 R2

A

B

CR1 + R2

The arrival rate of reads within repeat unitig R is
statistically higher than for unique unitigs A, B or C.
The corresponding A-stat will mark the unitig as
unreliable.

Note: Requires uniform distribution of reads.

R

Arrival IntervalsArrival Intervals

Discriminator A-Statistic is log odds ratio of probability is log odds ratio of probability unitigunitig is for is for
unique DNA versus 2unique DNA versus 2--copy DNA.copy DNA.

Definitely UniqueDefinitely Repetitive Don’t Know

--1010 +10+1000

Dist. For Unique
Dist. For Repetitive

Read Arrive Rate

Identifying Unique DNA

Expected Coverage is:
(Sum of read lengths) /
Genome Size

Correct for biases:
• cgw –j (ASTAT) : set threshold for definitely unique
• unitigger –l (utgGenomeLen) : adjust genome size estimate, boost borderline unitigs

runCA Pipeline

1. Create Stores
– gatekeeper
– PopulateFrgStore

2. Find Repeats
– meryl

3. Overlap
– overlap
– grow-overlap-store

4. Error Correction
– correct-frags
– correct-olaps
– update-erates

5. Unitigging
– unitigger
– consensus -U

6. Scaffolding
– cgw
– consensus

7. Finalize Data
– Terminator
– qc file

Unitig Splitting

Unitigs are split when the coverage level drops
below a threshold, and there are no mates
connecting the unitig.

After this step, unitigs are opaque, and every read
will be placed in exactly one unitig.

Initial Scaffolding

Create a initial scaffold of unique unitigs (U-Unitigs) whose
A-stat > 5. Also recruit borderline unitigs whose A-stat is > 2
and have consistent mates with the U-Unitigs.

Scaffold

Bundle

U-Unitig

Repeat Resolution

Rock Stone

Scaffold

Place rocks (A-stat > 0 with multiple consistent mates), and stones (single
mate and overlap path with placed objects) into the gaps. Pebbles, unitigs
lackings mates, are no longer incorporated regardless of overlap qualities.

Scaffold merging

After placing borderline unitigs and rocks, there may be sufficient
mates to merge scaffolds (mates from stones are not considered). If
multiple orientations are possible, choose the scaffold merge with
the happiest mates.

This in turn may allow for new rocks and stones to be placed, so
iterate these steps until the scaffold stabilizes.

Mate Bundling

• The CA scaffolder requires accurate library size
estimates.

• Generally necessary to run scaffolder at least
twice.

• CGW outputs revised library sizes, repeat until
convergence.

• May need to manually split libraries if distributions
are multi-modal.

Assembly Dregs

• Degenerate unitigs are unitigs with poor A-stat
values and not in any scaffold as a rock or stone.
(Single contig/unitig scaffolds with a good A-stat
are acceptable).

• Non-unique surrogate unitigs are unitigs
incorporated as stones in multiple places in the
scaffold. Consequently, their reads will be
multiply placed.

• Scaffolding Merging is not done with stones or
degenerates so scaffolds may end even though
there are unambiguous mates links to follow.

runCA Pipeline

1. Create Stores
– gatekeeper
– PopulateFrgStore

2. Find Repeats
– meryl

3. Overlap
– overlap
– grow-overlap-store

4. Error Correction
– correct-frags
– correct-olaps
– update-erates

5. Unitigging
– unitigger
– consensus -U

6. Scaffolding
– cgw
– consensus

7. Finalize Data
– Terminator
– qc file

Assembler outputs

asmbl.asm - all the information in Celera message format
asmbl.qc - summary statistics

asmbl.fasta, asmbl.contig - all the contigs, surrogates and degenerates
asmbl.placed.fasta, .contig - all the contigs
asmbl.surrogates.fasta, .contig - all the surrogates
asmbl.degenerates.fasta, .contig - all the degenerates

asmbl.singletons - all the singletons

asmbl.scaffolds.fasta - all the scaffolds, 60 Ns replace the gaps
asmbl.scaffolds.info - contig order/orientation for scaffolds

The .qc file

http://www.cbcb.umd.edu/research/castats.shtml

[Scaffolds]
TotalScaffolds=2
MeanContigsPerScaffold=23.50
MaxContigsPerScaffold=30

TotalBasesInScaffolds=3298141
MeanBasesInScaffolds=1649070.50
MaxBasesInScaffolds=2100614
N50ScaffoldBases=2100614

TotalSpanOfScaffolds=3310522
MeanSpanOfScaffolds=1655261.00
MaxScaffoldSpan=2104833
IntraScaffoldGaps=45
MeanSequenceGapSize=275.13

[Top_5_Scaffolds_contigs_size_span_avgContig_avgGap]
0=30 2100614 2104833 70020.47 145.48

N50 size

50% of genome is in contigs larger than N50

Example:

1 Mbp genome
Contigs: 300, 100, 50, 45, 30, 20, 15, 15, 10,
N50 size = 30 kbp

(300+100+50+45+30 = 525 >= 500kbp)

Note:

N50 is meaningful for comparison only when genome
size is the same

Assembly Quality

• AMOS Validation Tools
– Library Construction
– Contaminate Sequences
– Read Trimming
– Coverage Levels
– A-stat problems / Degenerate Contigs
– Local Mis-assembly

• Be aware of potential size/quality tradeoffs.

runCA-OBT
Overlap-Based-Trimming

• Find local alignments (“partial overlaps”) between untrimmed reads.

• Use overlapping alignment regions to set new clear range.

• Patterns of overlap forks can automatically find and trim unknown vector
sequences.

• runCA-OBT is a work in progress at Venter Institute
– Does several advanced operations as well: extendClearRanges,

resolveSurrogates, resizes Libraries
– wgs-assembler/src/AS_RUN/runCA-OBT/doc.tex

New clear range

Celera Assembler Summary

• Strategy
1. Compute Overlaps between reads
2. Simplify Overlap Graph into Unitigs
3. Score Unitigs based on Coverage
4. Create Contigs & Scaffold of Unique Unitigs
5. Fill in gaps with repetitive unitigs

• Complications
1. Vector & Quality trimming to find all overlaps
2. Unitig Error Rate to separate repeat copies
3. Unitig Scoring (A-stat) to build contigs from unique

pieces

Current Development

• UMd / CBCB
– Overlapping, Repeat Resolution

• UMd / IPST
– Error Correction, Unitigging

• Venter Institute
– OBT, Scaffolding, Consensus

• TIGR
– Code Engineering, Bug Fixes

Steven Salzberg
Art Delcher

Jim Yorke

Granger Sutton

Martin Shumway
Jason Miller

